
 A Comparison of the Security of
Windows NT and UNIX†

Hans Hedbom1,2, Stefan Lindskog1,2,

Stefan Axelsson1 and Erland Jonsson1

Abstract

This paper presents a brief comparison of two operating systems, Windows
NT and UNIX. The comparison covers two different aspects. First, we
compare the main security features of the two operating systems and then
we make a comparison of a selection of vulnerabilities most of which we
know have been used for making real intrusions. We found that Windows
NT has slightly more rigorous security features than “standard” UNIX but
the two systems display similar vulnerabilities. The conclusion is that there
are no significant differences in the “real” level of security between these
systems.

1Dept of Computer Engineering
Chalmers University of Technology

S-412 96 Göteborg, SWEDEN
{sax, Erland.Jonsson}@ce.chalmers.se

2Dept of Computer Science
University of Karlstad

S-651 88 Karlstad, SWEDEN
{Hans.Hedbom, Stefan.Lindskog}@hks.se

†Presented at the Third Nordic Workshop on Secure IT Systems, NORD-
SEC’98, 5-6 November, 1998, Trondheim, Norway.

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 2

1. Introduction

It has been claimed that the security of Windows NT is far better than that of previous
commercial operating systems. In order to verify (or refute) this statement we have
made a brief comparison of the security of Windows NT to that of UNIX. UNIX was
selected as a reference since it is well-known and widely spread. Thus, the target sys-
tems were (1) a networked Windows NT 4.0 and (2) UNIX with NFS (Network File
System) and NIS (Network Information System). The reason for choosing NFS and
NIS is that the two operating systems constitute comparable environments, i.e. they
have similar network functionality. It should, however, be stressed that UNIX comes in
many different versions, so our reference is not completely unambiguous. Still, we
believe that this fact does not reduce the value of the work presented.

The comparison covers two different aspects. First, we compare the main security fea-
tures of the two operating systems and then we make a comparison of a selection of
vulnerabilities most of which we know have been used for making real intrusions.
Those have been gathered from intrusion experiments carried out at the department of
Computer Engineering at Chalmers University of Technology for data collection pur-
poses [3], [20] or from our own system analysis [7]. Some data has been taken from
other publicly available sources.

For the comparison of the vulnerabilities of the two systems, we have used a taxonomy
of intrusion techniques suggested by Lindquist and Jonsson [15]. The taxonomy has
proven useful for classifying realistic intrusions and it covers all three security
attributes: confidentiality, integrity and availability.

In the following, section 2 compares the security features, while section 4 gives a sys-
tematic comparison of weaknesses in Windows NT and UNIX. The taxonomy used for
classifying the vulnerabilities in section 4 is described in section 3. Section 5 discusses
the results and concludes the paper.

2. Comparison of Security Features

2.1 Background

The Windows NT operating system was developed by Microsoft Inc. and was first
released in 1992. Windows NT has support for processes, threads, symmetric multipro-
cessing, distributed computing, and uses an object model to manage its resources. The
structure of Windows NT is a hybrid between the layered model and the client/server
model [5]. The former is used in the executive, which is the only part executing in ker-
nel mode, while the latter is used to (1) provide the user with multiple operating system
environments, e.g. Windows, MS-DOS, OS/2 and POSIX1 and (2) implement parts of
the operating system.

The UNIX operating system was first developed in the early seventies at AT&T Bell
research laboratories. It is traditionally implemented as a single monolithic kernel, that

1. Portable Operating System Interface based on uniX

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 3

runs in kernel mode, while all user programs run in user mode. The kernel contains
code for the file system, device drivers as well as code for process management [1],
[16]. However, UNIX has always managed large parts of many system functions, such
as networking etc, outside the kernel, in user mode processes.

In the following of this section is presented a number of security mechanisms for
UNIX and Windows NT. These mechanisms have primarily been taken from the
TCSEC [25] with some modifications. The mechanisms represent different aspects of
security and are meant to provide a broad coverage of the area. Differences and simi-
larities between the security mechanisms of the two operating systems are discussed in
a concluding subsection.

2.2 Identification

2.2.1 Windows NT

User identification is done by a username that is mapped onto an internal Security
IDentifier (SID). A SID is a numeric value that is unique within a domain (and with
high probability between domains as well). When a new account is created on the sys-
tem a SID is created and stored together with this account. SIDs are never reused so a
newly created account can not get the SID of a previously deleted account.

2.2.2 UNIX

A user is identified by a username, which is given when the user logs on to the system.
Internally a user is identified with a User IDentification number (UID), which is a
numeric value selected by the system administrator at the time the account is created.
In most cases, selecting unique UIDs for each user is a good idea [6], though not
strictly required. The mapping of username to UID is kept in the file /etc/passwd,
but is today often centrally managed by NIS. The super user (or root) has UID 0 (zero).
Every user belongs to one or more groups. A group is identified with a group identifi-
cation number (GID).

2.3 Authentication

2.3.1 Windows NT

User authentication is done using passwords. Windows NT stores passwords together
with SIDs and other information on the user in a database handled by the Security
Accounts Manger (SAM) subsystem. Two hashed versions of the password are stored,
LM-hash and NT-native, unless the system is told to just use one. The NT-native vari-
ant is stored using MD4 and the LM-hash using a variant of DES.

2.3.2 UNIX

After identification, UNIX will also request a password to authenticate the user's iden-
tity. When the user has entered the password, it is encrypted using a modified DES
algorithm described in [6], and compared against the encrypted password stored in /
etc/passwd (or the NIS database). If the two match, the user has proven to be a

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 4

legitimate user in the system. The file /etc/passwd is readable for everyone in the
system, which makes it sensitive for password attacks. A solution to this problem is to
use what is known as a "shadow" file (/etc/shadow). The whole idea is then to
move the encrypted passwords from /etc/passwd to /etc/shadow, and make
the latter not readable by normal users.

2.4 Access Control

2.4.1 Windows NT

Every object in the system has an Access Control List (ACL) associated with it. This
list consists of a number of Access Control Entries (ACE). Every ACE is associated
with a user (or a group) SID and holds the actions that this user is allowed or disal-
lowed to perform on this object. ACEs that disallow are put before ACEs that allow in
the ACL. A user that does not have an ACE in the ACL has no access at all to that
object.

An object can also have a NULL ACL or an empty ACL. If the object has a NULL
ACL this object has no restrictions. An empty ACL on the other hand means that
nobody can access this object in any way. A newly created object is usually given the
ACL of its creator by default.

When a user is authenticated to the system a token is created for this user. This token is
called the primary token. It contains, among other things, the SID for the user and the
SIDs of the groups that this user is a member of. This token is compared with an
object’s ACL to grant (or deny) the user access to this object.

2.4.2 UNIX

UNIX's access control is implemented through the file system. Each file (or directory)
has a number of attributes, including a filename, permission bits, a UID and a GID.
The UID of a file specifies its owner.

The permission bits are used to specify permissions to read (r), write (w) and execute
(x) the file for the user, for the members of the user's group, and for all other users in
the system. The permissions: rwxr-x--x specify that the owner may read, write and
execute the file, while the group members are allowed to read and execute it, while all
others only may execute the file. A dash ("-") in the permission set indicates that the
access rights are disallowed. Most systems today also support some form of ACL
schemes.

Furthermore, each process in UNIX has an effective and a real UID as well as an effec-
tive and a real GID associated with it. Whenever a process attempts to access a file, the
kernel will use the process's effective UID and GID to compare them with the UID and
the GID associated with the file to decide whether or not to grant the request

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 5

2.5 Auditing

2.5.1 Windows NT

The Security Reference Monitor (SRM) and the Local Security Authority (LSA)
together with the Event Logger handle the auditing in Windows NT. Different types of
events are grouped into event categories and auditing is then done based on these
groups. There are seven types of event groups. For details on event groups see [18]. If
auditing applies and what is to be audited is determined by the Audit Policy that is han-
dled by the LSA and given to the SRM by LSA.

The auditing is based on audit records constructed on request from the responsible sub-
system or server by SRM (in some cases by LSA). Requests from the executive is
always carried out. Servers, on the other hand, need the Audit privilege for SRM to
honor their request. The request must be sent for each occurrence of an event. The
audit record is then sent to the LSA, which in turn sends it to the Event Logger after it
has expanded some fields and compressed others. The Event Logger commits the audit
record to permanent storage.

2.5.2 UNIX

Traditionally the UNIX kernel, and system processes, store pertinent information in
log files, either locally, or centraly on an network server, via the the flexible and con-
figurable syslog facility [13]. In addition, many modern UNIX systems supports a
more comprehensive type of auditing known as C2 audit. This is so-name because it
fulfills the audit requirements for the TCSEC C2 security level [25].

2.6 Networking

2.6.1 Windows NT

The distributed parts of Windows NT rely heavily on Server Message Block (SMB).
This is an application level protocol used by Microsoft for a number of thinks. Among
those are authentication, RPC and the Common Internet File System protocol (CIFS)
[8], [11], [12]. In the Windows NT environment an SMB is carried on top of a Net-
BIOS over TCP/IP (NBT) session [21], [22], including UDP as a carrier for NetBIOS
as well. There are a number of things to be said about CIFS/SMB, regarding security.
First, it is possible to establish so-called NULL sessions, i.e. sessions with no user-
name. Machines that exchange RPCs through named pipes frequently do this. Second,
all logging in Windows NT and most other checks is done on computer names and not
IP addresses. This means that there is no way of telling from where a computer is
accessing. We are fully aware of IP address forging, but it is even simpler to forge a
computer name. Third, the protocol is very outspoken, and will freely give away much
information about what is going on. Last, all in all, there is too much trust in client
machines behaving in a non-malicious manner. For a more in-depth description on
some of the weaknesses in CIFS/SMB, see for example [10].

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 6

2.6.2 UNIX

Most modern UNIX machines are networked. The default networking support is based
on TCP/IP. Remote terminal access, remote file transfer and remote command execu-
tion are provided through a set of programs (rlogin, rcp, rsh, etc). These are collec-
tively known as the 'r' commands. The Network File System (NFS) [23] adds support
for several hosts to share files over the network, while the Network Information Sys-
tem (NIS) [9], formally known as the Sun Yellow Pages, allow hosts to share system
databases containg data concerning user account information, group membership, mail
aliases etc. via the network, to facilitate centralised administration of the system.

The 'r' commands are not secure, due to a number of facts. First, they assume that all
hosts in the network are trusted to play by the rules, e.g. any request coming from a
TCP/IP port below 1024 is considered to be trusted. Second, they use address-based
authentication, i.e. the source address of a request is used to decide whether or not to
grant a service. Third, they send clear text passwords over the network.

Before an NFS client can access files on a file system exported by an NFS server, it
needs to mount the file system. If a mount operation succeeds, the server will respond
with a ”file handle,” which is later used in all accesses to that file system in order to
verify that the request is coming from a legitimate client. Only clients that are trusted
by the server are allowed to mount a file system. The primary problem with NFS is the
weak authentication of the mount request [4], which is based on IP addresses, that may
be faked.

NIS can be configured to perform (1) no authentication, (2) traditional UNIX authenti-
cation based on machine identification and UID, or (3) DES authentication [9]. (3) pro-
vides quite strong security, while (2) is used by default by NFS. According to [6], a
forth authentication method based on Kerberos [24] is also supported by NIS. Both
servers and clients are sensitive to attacks, though Hess et al. [9] are of the opinion that
the real security problem with NIS resides on the client side. It is easy for an intruder to
fake a reply from the NIS server. Such an intrusion is further described in subsection
4.1.3.2.

2.7 Impersonation

The user of the system must be able to perform certain security critical functions on the
system normally exclusive to the system administrator, whithout having access to the
same security permissions as her/him. One way of giving users controlled access to a
limited set of system privileges is for the system to allow the execution of a specified
process by an ordinary user, with the same permissions as another user, i.e. system
privileges. This specified process can then perform application level checks to insure
that the process does not perform actions that user was not intended to be able to per-
form. This of course places stringent requirements on the process in terms of correct-
ness of execution, lest the user be able to circumvent the security checks, and perform
arbitrary actions, with system privileges.

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 7

2.7.1 Windows NT

Every thread that executes in the system has the possibility to have two tokens. One of
them is the primary token and the other is a so called impersonation token. This is a
token given to the thread by another subject which allows the thread to act on that sub-
jects behalf. Impersonation token is a full or restricted variant of that subject’s primary
token.

2.7.2 UNIX

Two separate but similar mechanisms handle impersonation in UNIX, the so called set-
UID, (SUID), and set-GID (SGID) mechanisms. Every executable file on a filesystem
so configured, can be marked for SUID/SGID execution. Such a file is executed with
the permissions of the owner/group of the file, instead of the current user. Typically
certain services that require super user privileges are wrapped in a SUID-super user
program, and the users of the system are given permission to execute this program. If
the program can be subverted into performing some action that it was not originally
intended to perform, serious breaches of security can result.

2.8 Discussion of Security Features

There are similarities in the security features of the two systems. Our opinion is, how-
ever, that the Windows NT systems mechanisms are more ambitious than the standard
UNIX mechanisms. This is of course partly due to the fact that Windows NT is of a
later date than UNIX. However, most Windows NT security features are available for
modern UNIX systems.

It is interesting to note that both systems contain mechanisms for impersonation, while
this has been an almost endless source of security problems with UNIX, it will be inter-
esting to see if Windows NT will come to suffer from the same problems.

Finally, it is worth mentioning that a system need not be more secure than another just
because it has more and better security features. Unfortunately both Windows NT and
UNIX have most of these features disabled by default for convenience reasons. Thus, it
takes an active decision to introduce security during installation.

3. Classification of Computer Security Weaknesses

A taxonomy is used to categorize phenomena, which, in general, make system studies
possible, or at least easier. By using an established classification scheme of intrusion
techniques, different systems can be compared based on intrusion data. One such
scheme was suggested by Neumann and Parker in [19], and was refined by Lindquist
and Jonsson [15]. We chose the latter in our comparison.

The selected taxonomy consists of three categories: bypass of intended controls (NP5),
active misuse of resources (NP6) and passive misuse of resources (NP7), see Table 1.

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 8

TABLE 1. Classification of Intrusion Techniques

Bypass of Intended Controls (NP5). Is the act of circumventing mechanisms in the
system that are put there to stop users from performing unauthorized actions.

Active Misuse of Resources (NP6). Is the act of maliciously using permissions or
resources for which the user accidentally have authorization to.

Passive Misuse of Resources (NP7). Is the act of searching for weak or erroneous
configurations in the system without having authorization to do so.

Descriptions of the applicable subclasses of each category are further presented in sec-
tion 4. Other taxonomies exist as well, though none, the two mention above included,
is perfect. A survey of previous work in the field is presented in [15].

4. Systematic Comparison of Weaknesses

In this section we will give examples of security weaknesses in both the Windows NT
system and the UNIX system. The different attacks are categorized according to the
taxonomy presented in section 3. Vulnerabilities in the same class are compared with
each other. In the cases where the attacks are identical in both systems only one exam-
ple is given and discussed.

4.1 Bypassing Intended Controls (NP5)

4.1.1 Password Attacks

To learn the password for a certian account, the attacker can either capture a plain text
password, or a cryptographically hashed password. In the later case the attacker can
then attempt to either brute force the password, i.e. try all possible combinations, or
with greater chance of quick success, try likely passwords, e.g. the last name of the
user, backwards, in all capital letters.

Category

Bypassing Intended
Controls (NP5)

Password Attacks Capture

Guessing

Spoofing Privileged Programs

Utilizing Weak Authentication

Active Misuse of
Resources (NP6)

Exploiting Inadvertent Write Permissions

Resource Exhaustion

Passive Misuse of
Resources (NP7)

Manual Browsing

Automated Searching Using a Personal Tool

Using a Publicly Avail-
able Tool

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 9

4.1.1.1 Password Capturing Attacks in Windows NT

Windows NT supports eight different variants of authentication for backward compati-
bility reasons. The party that suggests which variant to use is the client in the
SMB_C_NEGOTIATE message. The older of these variants sends plain-text pass-
words over the network. The server can always try and suggest a more secure variant
but it is the client that, unless there is a share-level versus user-level incompatibility,
sets the level of security. The server as default will always accept plain-text passwords
as valid authentication [10]. An attack, suggested by David Loudon, that is based on
the fact that the server always accepts plain-text passwords, and that the client can be
fooled into using a weaker authentication protocol, is carried out as follows:

Scan the network for negotiate request messages. When a request is intercepted, send a
reply to that request masquerading as the server that is the recipient of the request, and
claim that you only understand an authentication variant that uses plain-text passwords.
Snatch the plain-text password from the network when the client later sends the session
setup message. None of the attacked parties will know that the attack has taken place,
since the user on the client is not aware of the fact that the security has been lowered,
and the server sees nothing wrong in the fact that the client sends plain-text passwords,
even though it originally suggested an encrypted variant.

4.1.1.2 Password Capturing Attacks in UNIX

Some of the protocols, e.g. telnet and ftp, and the ‘r’ commands used in the UNIX
environment sends plain-text password information. Thus all an attacker has to do is
sniffing the network for these activities and copy the password off the wire.

4.1.1.3 Comparison of Password Capturing Attacks

The weaknesses described here could all be categorized as legacy problems. Windows
NT has this problem because it tries to be backward compatible and the same could be
said about the UNIX environments that uses the protocols described above. If compati-
bility is not a requirement, a Windows NT Server or Client could be configured not to
accept older variants of the SMB protocol and in the UNIX environment more secure
protocols that has the same functionality, e.g. SSH [26], could be used.

4.1.1.4 Password Guessing Attacks in Windows NT

In Windows NT, the passwords are stored in Lan-Manager-hash, or LM-hash, format
as well as in NT-native format. The LM format has a much weaker encryption algo-
rithm than the native format, e.g. in Lan Manager only upper-case characters are
allowed and the password is padded with NULLs if it is not 14 characters long. This
together with the encryption method used, creates recognizable patterns if the pass-
word contains less than eight characters. The public domain program L0phtCrack can
be used for brute force attacks as well as for dictionary attacks. To gather encrypted
passwords for later cracking one can either try to get hold of a copy of the SAM data-
base or sniff the network. Programs exists for both purposes.

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 10

4.1.1.5 Password Guessing Attacks in UNIX

In UNIX, encrypted passwords are traditionally stored in the /etc/passwd file. This file
is readable for every legitimate user on the system. In some UNIX versions the
encrypted passwords are instead stored in a shadow file, which is only readable by the
super user. Since the introduction of NIS it is also possible to obtain passwords from
the network in UNIX installations. NIS does very little in the way of preventing unau-
thorized hosts from gaining access to the hashed passwords of a system. When these
passwords have been obtained the attacker is free to try and crack them with for exam-
ple Crack [17].

4.1.1.6 Comparison of Password Guessing Attacks

Both Windows NT and UNIX are susceptible to password attacks. Not really because
of weak encryption methods but due to the fact that they allow too short or easily
guessed passwords. An alternative way of looking at this is to say that they allow pass-
words to have a longer lifetime than the time it takes to guess or break them. Another
question is or course, if users can be trusted to choose more secure passwords, i.e. that
are more difficult to guess. The authors are not all that convinced that this is the case.
Neither are we convinced that automatically generated passwords is a solution to this
dilemma.

4.1.2 Spoofing Privileged Programs

If a program, that is trusted by more than a user, can be lured to perform actions on
behalf of that user, s/he has access to more privileges than intended. The program can
be fooled into giving away information, changing information or cause denial of ser-
vice attacks. There are a number of examples of exploits in this category, including
GetAdmin [7] and the X terminal emulator logging vulnerability [14]. Below we
present a vulnerability that is identical for both systems.

4.1.2.1 Spoofing Privileged Programs in Windows NT and UNIX

When an IP packet handler gets a message that is to large to fit into a packet it normally
breaks this message into fragments and puts every fragment in a separate IP packet. All
but the last of these packets has the More Fragments (MF) bit set in the header. The
packets also have an offset counter that tells the other side where in the original mes-
sage this fragment fits.

Teardrop is an attack or program that uses missing checks in the fragmentation han-
dling of the IP stack. The whole idea is to send two IP packets; one that is normal but
has the MF flag set, and another that has a fragmentation offset that is inside the first
packet, but a total size that makes this fragment smaller than the first packet, i.e. the
second packet is only a small piece of the data in the first packet. However, this time
the MF flag is not set, so the system will treat the second packet as the last in the frag-
mentation run. When the system tries to align these packets it will end up with an offset
that is larger than the end mark. The function that reads data from the packet buffer cal-
culates the number of bytes to read by taking the end counter and subtract the offset-
counter. In this case it will end-up with a request to read a negative number of bytes
and therefore read too much data, and by doing this crash the system. All in all this is a

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 11

traditional buffer overrun error. Windows NT and many UNIX versions, as well as
routers, are sensitive to a Teardrop attack. The reason for this can be that the same ref-
erence implementation of the TCP/IP stack has been used in all systems.

4.1.3 Utilizing Weak Authentication

Utilizing Weak Authentication means taking advantage of the fact that the system does
not properly authenticate the originator of a certain request. In the subsections below
we will exemplify this class by presenting two man-in-the-middle attacks.

4.1.3.1 Utilizing Weak Authentication in Windows NT

In Windows NT a normal remote logon occurs as follows:

1. The client tries to setup a SMB connection to the exported service on the remote
computer.

2. The server will send the client a challenge

3. The client will calculate two 24-byte strings using the challenge and the LM and NT
passwords, and send those in an SMB message to the remote computer. After that
the user is considered authenticated.

The protocol can, however, be fooled as the following attack shows. It is described by
Dominique Brezinski in [2] and relies on the fact that there is nothing that prevents an
attacker from masquerading as the server. Brezinski describes the attack as follows
(Mallory is the attacker and Alice the user):

1. Mallory sends a connection request to the host

2. The host responds with a random string

3. Mallory waits for Alice to send a connection request to the host

4. When Alice sends a connection request to the host, Mallory forges a response to
Alice containing the random string sent to Mallory by the host

5. Alice encrypts the random string using the hash of her password as the key and
sends it to the host

6. Mallory intercepts (or just copies it off the wire) Alice response and repackages it as
a response to the connection request made in 1 and sends it to the host claiming to
be Alice

7. The host looks up the hash of Alice's password in the security database and encrypts
the random string sent to Mallory

If the host's encrypted string matches the encrypted string sent by Mallory, claiming to
be Alice, to the host, Mallory is allowed into the system under Alice’s credentials

4.1.3.2 Utilizing Weak Authentication in UNIX

When NIS is added to the basic operating system similar attacks are possible in UNIX
as well. One described by David K. Hess et al. in [9] goes as follows.

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 12

1. An intruder is watching on the connection between the NIS client and the NIS
server for the NIS/RPC/UDP yp_match query for a particular user. This command
is used to get authentication information from a NIS server. The reply is a string
identical to a user entry in the /etc/passwd file.

2. When this query passes by the intruder it quickly generates a fake reply and sends
this to the client before the server sends its reply. Since UDP is used and the servers
reply is later than the intruders the latter message is just discarded.

The result of this attack is that the user is authenticated by the intruder and not by the
proper NIS server.

4.1.3.3 Comparison

These two attacks succeed because of misplaced trust. In both cases the client trusts the
server blindly and because of that it can be fooled. The results differs slightly. In the
Windows NT case the intruder gets access to the server and only as the user that s/he
manages to intercept. In the UNIX case on the other hand the intruder gets access to the
client but as a user of his/her own choice. One could, however, easily think of variants
were the tables are turned in both cases.

4.2 Active Misuse of Resources (NP6)

4.2.1 Resource Exhaustion

Resource exhaustion is usually employed as a mean of causing denial of service. The
idea is to allocate as many instances of one (or more) type(s) of resources as possible.
Normally this will either slow down or crash the system.

4.2.1.1 Resource Exhaustion in Windows NT

Normally, a thread in Windows NT has a priority value between 1 and 15, where 1 is
the least priority. It is not normal for a program to have a high priority value (>10).
Furthermore, Windows NT has an aging mechanism but will only age threads up to pri-
ority 14. CpuHog is a small program, which uses the priority mechanism to hang the
system. What CpuHog actually does is to set priority 15 on itself and then enters an
infinite while loop. This will cause the system to hang so that it is impossible to start
any other program including the Task Manager. The strange thing here is that you need
no special privileges to be able to do this. Microsoft has addressed this problem in a
service pack by allowing aging up to priority level 15 which means that CpuHog will
only slow down the system considerably.

4.2.1.2 Resource Exhaustion in UNIX

Probably the most known denial of service attack in the UNIX environment is the
while (1) fork(); program. This line of C code starts a new process for every
iteration in the while loop. The result will be that all entries in the system wide process
table are consumed, which implies that no new processes can start. Many vendors have
nowadays fixed this problem by limiting the number of processes a user can start.

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 13

4.2.1.3 Comparison

In both systems resource exhaustion attacks are possible, due to the fact that they allow
users to allocate an unreasonable number of resources. It is interesting to note that the
two attacks uses different mechanisms, but that the result is the same.

4.3 Passive Misuse of Resources (NP7)

Passive misuse of resources is the idea of an unauthorized user looking for weaknesses
without using them. This knowledge can later be used in an active attack. The methods
used are either manual browsing or automated browsing using specialized tools.

4.3.1 Manual Browsing

In manual browsing the attacker looks for weaknesses without using any tool designed
for this purpose. The knowledge gained by manual browsing can later be incorporated
into an automatic tool. It is difficult to say whether one of the two systems is more sus-
ceptible to manual browsing attacks than the other. The key thing here is a good under-
standing of the system i.e. to know what to look for. Today it is easier to find in-depth
publicly available descriptions of the UNIX systems.

4.3.2 Automated Searching

Automated searching is subdivided into using a personal tool or using a publicly avail-
able tool. The only reason for this division is that it is easier to automatically detect the
use of a publicly available tool.

A lot of different tools that looks for weaknesses or other information exists for both
environments. In some cases these tools have the same name and looks for general as
well as operating system specific vulnerabilities. A program in this category is the
Internet Scanner (IS), which is a commercial version of the well known program Inter-
net Security Scanner (ISS). Other general programs that have for a long time been used
in the UNIX community are either going to be ported or are now in the process of
being ported to Windows NT. SATAN is an example of such a program. All in all, both
systems are definitely sensitive to these kinds of attacks.

5. Discussion and Conclusion

This paper demonstrates that the security mechanisms of Windows NT are slightly bet-
ter than those of UNIX. Despite this fact the two systems display a similar set of vul-
nerabilities. This implies that Windows NT has the theoretical capacity of being more
secure than “standard” UNIX. However, with the present way of installing and using
the systems there seems to be no significant difference between their security level. It
is true that there are presently more intrusions in UNIX systems, but we believe that
this is due to the aging factor, i.e. the statement above should hold when comparing the
systems at the same state of development and market penetration. Thus, the only rea-
son for more UNIX penetrations is that the system is older and more well-known and
we should anticipate an increasing number of intrusions into Windows NT, a tendency
that has already started.

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 14

It is clear that the Achilles heel of both systems is networking. Since both systems uti-
lize the same low level protocols, i.e. IP, TCP and UDP, and comparable high level
protocols. This could to some extent explain that the security behavior of both systems
is similar, but it does not provide the full explanation. However, as long as the net-
working is such a weak point, the usefulness of other security mechanisms is dimin-
ished.

Acknowledgments

The work described in this paper was partly supported by Telia Research, Farsta, Swe-
den.

References
[1] Maurice J. Bach, The Design of The UNIX Operating System. Prentice-Hall Inc,

1986.

[2] Dominique Brezinski, A Weakness in CIFS Authentication. February, 1997.

[3] Sarah Brocklehurst, Bev Littlewood, Tomas Olovsson and Erland Jonsson, On
Measurement of Operational Security. In COMPASS 94, 9th Annual IEEE Con-
ference on Computer Assurance, Gaithersburg, pp.257-66, IEEE Computer Soci-
ety, 1994.

[4] D. Brent Chapman and Elizabeth D. Zwicky, Building Internet Firewalls. O’Reilly
& Associates, Inc., November 1995.

[5] Helen Custer, Inside Windows NT. Microsoft Press, 1993.

[6] Simson Garfinkel and Gene Spafford, Practical UNIX and Internet Security, 2nd
edition, O’Reilly & Associates, Inc., 1996.

[7] Hans Hedbom, Stefan Lindskog, Stefan Axelsson and Erland Jonsson, Analysis of
the Security of Windows NT. Chalmers University of Technology, June, 1998.

[8] I. Heizer, P. Leach and D. Perry, Common Internet File System Protocol (CIFS
1.0). Internet Draft, 1996.

[9] David K. Hess, David R. Safford and Udo W. Pooch, A UNIX Network Protocol
Security Study: Network Information Service. Texas A&M University.

[10] Hobbit, CIFS: Common Insecurities Fail Scrutiny. Avian Research, January,
1997.

[11] Paul J. Leach, CIFS Authentication Protocols Specification. Microsoft, Prelimi-
nary Draft, Author’s draft: 4.

[12] Paul J. Leach and Dilip C. Naik, CIFS Logon and Pass Through Authentication.
Internet Draft, 1997.

[13] LeFebvre-W, Simply syslog. Unix-Review, vol. 15, no. 12, November 1997.

[14] Ulf Lindqvist, Ulf Gustafson and Erland Jonsson, Analysis of Selected Computer
Security Intrusions: In Search of the Vulnerability. Technical Report 275, Depart-
ment of Computer Engineering, Chalmers University of Technology, Göteborg,

A Comparison of the Security of Windows NT and UNIX† 2 March 1999 15

Sweden, 1996.

[15] Ulf Lindqvist and Erland Jonsson, How to Systematically Classify Computer
Security Intrusions. In Proceedings of the 1997 IEEE Symposium on Security &
Privacy, pp. 154-163, Oakland, California, USA, May, 1997.

[16] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels and John S. Quarter-
man, The Design and Implementation of the 4.4BSD Operating System. Addison-
Wesley, 1996.

[17] Alec D.E. Muffett, Crack - A Sensible Password Checker for UNIX, 1992.

[18] NCSC, FINAL EVALUATION REPORT Microsoft Inc.: Windows NT Worksta-
tion and Server Version 3.5 with U.S. Service Pack 3. National Computer Security
Center, 1996.

[19] Peter G Neumann and Donn B Parker, A summary of computer misuse tech-
niques. In Proceedings of the 12th National Computer Security Conference, pages
396–407, Baltimore, Maryland, USA, October 10–13, 1989.

[20] Tomas Olovsson, Erland Jonsson, Sarah Brocklehurst and Bev Littlewood,
Towards Operational Measures of Computer Security: Experimentation and Mod-
elling. In Predictably Dependable Computing Systems, editor B. Randell et al.,
Springer Verlag, 1995.

[21] RFC 1001, Protocol Standard for a NetBIOS Service on a TCP/UDP Transport:
Concepts and Methods. March, 1987.

[22] RFC 1002, Protocol Standard for a NetBIOS Service on a TCP/UDP Transport:
Detailed Specifications. March, 1987.

[23] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh and Bob Lyon,
Design and Implementation of the Sun Network Filesystem. Summer USENIX
Conference Proceedings, Portland, 1985.

[24] Jennifer G. Steiner, Clifford Neumann and Jeffery I. Schiller, Kerberos: An
Authentication Service for Open Network Systems. USENIX Winter Conference,
Dallas, Texas, USA, February, 1988.

[25] Trusted Computer System Evaluation Criteria (“orange book”). National Com-
puter Security Center, Department of Defense, No DOD 5200.28.STD, 1985.

[26] Tatu Ylönen, SSH - Secure Login Connections over the Internet. SSH Communi-
cations Security Ltd, June 7, 1996.

